2023/09/23 Beijing, China @qualcomm

Performance Analysis
for RIS Assisted
Wireless Sensing

Mingxi Yin (F}BBHf), Min Huang (&%), Hao Xu (1REZ)

Qualcomm Wireless Communication Technologies (China)




Outline

» System model
» Pathloss and SNR analysis

- Evaluation




System Model
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* RIS-assisted communications
* RIS enhances the communication link btw Tx and Rx.

 RIS-assisted sensing: mono-static and bi-static
« Enhancing power of indirect links which are reflected by RISs, to exceed power of direct link.
» Bypassing blockage in direct links.



System Model

 Paths of RIS-assisted mono-static sensing
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Receive Power of Sensing Assisted by RIS

Monostatic Sensing: BS — RIS — object — RIS — BS

[Ref] W. Tang et al., "Wireless
Communications With Reconfigurable
Intelligent Surface: Path Loss
Modeling and Experimental
Measurement," in IEEE Transactions
on Wireless Communications, vol. 20,
no. 1, pp. 421-439, Jan. 2021. (SEU)
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Receive power increases with the fourth
power of the number of RIS unit cells




Power Gain of RIS in Monostatic Sensing

_ _ o _ a cell edge
Comparison of RIS in Communications and Sensing

Power gains brought by RISs in sensing and communications with
the fixed unit cell number (100x100) or the fixed RIS size (1 m?)
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 Fixed unit cell number: the advantage of RIS assisted sensing over communications reduces
* Fixed RIS size: the advantage of RIS assisted sensing over communications grows



Required RIS Size in Monostatic Sensing

The minimum size of RIS in mono-static sensing to

achieve the receiver sensitivity
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 Higher carrier frequency — Smaller required RIS size

* RIS size grows slowly with the increasing of target power gain



SNR for Sensing Assisted by RIS

Monostatic Sensing: BS — RIS — object — RIS — BS

« System Parameters
 Carrier frequency = 3.5 GHz, BW = 100MHz, comb 4 RS
* BS:
* P, = 49 dBm (TR 38.855), G, = G, = 8 dBi,
* Antenna uptilt 0°, beamforming gain = 12 dB
* Noise figure = 8 dB, noise density -174 dBm/Hz

* RIS:
e Surface size M = N = VK
 Unit cell size [, = [, = A/4, amplitude of coefficient « = 0.7
» Varactor-diode or 2-bitquantized PIN-diode

° SNR — PBS,rx

kToBFy,
 Paths other than the direct link can be neglected
» Non-target reflections assumed removed by radar processing
« TR36.777 (target UAV): 15 dB for the target LOS/NLOS ratio over Rician
channels

UMa cell edge
Geometry (top view):

Q sBs ~
:
|
1
|
|
|
1
|
|

, 190m > 333'm
— X

target !
region :

: ~100 m
:
|

= ~

RIS UMa cell edge

Assume BS, RIS and
objects are same in height
for in the initial analysis



SNR for Sensing Assisted by RIS

Comparison RIS size and quantization

a cell edge

 Color shows SNR of BS — RIS — object —» RIS — BS minus SNR of BS — object —» BS
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» Impact of the quantization of two bits and more on the RIS beamforming gain could be neglected.



Utilization of RIS in Sensing

* New anchor node

« New anchor by RIS to replace the 4t largest SNR BS in the
object 3D locating with higher SNR

 For the object position denoted by the triangle, the four largest

SNR BSis BS 1, 2, 6 and 7, where the 4" largest SNR BS is BS
6

* RIS can reflect signals from BS 1 to exceed the SNR of BS 6 at
the object position.

* RIS to provide additional sensing/positioning
RS

* RIS can extend the coverage to the area with LOS
blockage between the BS
« UEs in the blockage can be served by RIS for

communications and serve as sensing RS receivers.
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System Setup

Four-Point Localization in 3D

* Baseline: BS monostatic

« Require four reference BSs not in the same plane
» Height of the 19 BSs is uniformly distributed in [20,50]
m (38.855 UMa outdoor)
* Four reference point: Select the four largest SNR BSs,
not in the same plane.

* RIS-based: BS + RIS

RIS provide a new reference point
» Height of all RISs is 10 m
* Four reference point: Select the three largest SNR BSs
and RIS
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Simulation Results

UAV Sensing as an Example

- SNR Gain by RIS

* Achieve an average SNR gain of 6.7 dB
compared to the 4th-highest SNR BSs.

SNR Gain by RIS in the coverage of a BS
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Simulation settings
Carrier frequency is 3.5 GHz
RIS sizeisM = N = 100, a = 0.7, RISs adopt far-field beamforming and the BSs
have a beamforming gain of 12 dB
Sensing object is assumed as drones with RCS o = 0.01 m? at the height of 120 m
RIS-based sensing: RIS height is 10 m with uptilting of 20°, and the BS heightis 25 m
with uptilting of 0°
Sensing w/o RIS: BS height is uniformly distributed in the range of 20750m
Algorithm: Gauss-Newton

* Localization Error

 Bottleneck is the 4th-highest-SNR device — much
smaller error in sensing assisted by RISs

CDF of Localization Error
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